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METHOD OF PROBABILISTIC CONVOLUTIONS

FOR INTERPRETING DATA OF ELECTROMAGNETIC LOGGING

UDC 532.546:550.820.7M. I. Épov,1 V. I. Pen’kovskii,2

N. K. Korsakova,2 and I. N. Yeltsov1

A new method is proposed for processing the data of electromagnetic logging in wells. The method is
based on the hydrodynamic analysis of drilling mud filtrate penetration into the oil stratum, deter-
mination of the field of electrical resistances of the near-well zone with its subsequent averaging by
convolutions with a kernel in the form of a logarithmically normal distribution of probe sensitivity.
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Introduction. Devices for high-frequency isoparametric induction logging are used to determine physi-
cal parameters of oil strata. Information registered by focusing signals depends on the electrical resistance of a
comparatively small near-well zone and undisturbed part of the oil stratum. In turn, the spatial distribution of
resistance depends on complicated interrelated hydrodynamic and physicochemical processes inherent in oil-well
drilling. Interpretation of logging data is a complicated problem whose solution often yields ambiguous results.

In electromagnetic logging of oil wells by devices of high-frequency isoparametric induction logging (HFIIL) or
high-frequency electromagnetic logging (HFEL) [1, 2], probes with the following conditions on structural parameters
are used: √

fiLi =
√

3.5 · 103, ∆Li/Li = 0.2. (1)

Here fi [Hz] is the emission frequency, ∆Li [m] is the distance between the measurement coils, and Li [m] is the
distance between the generator coil and the center of the remote measurement coil; i = 1, 2, . . . is the probe number.

Conditions (1) allow us to consider the medium response and, hence, confine ourselves to its measurement
by each probe on an annular area of the oil formation surrounding the oil well. In fact, each probe measurement in
an axisymmetric and vertically uniform oil stratum is a certain averaged electromagnetic characteristic of this area
whose radius is denoted as ri. With distance from it, the contributions of responses and the measurement accuracy
of the ith probe decrease. The specific electrical resistances calculated by the phase difference of electromagnetic
oscillations measured by the probes are called “apparent;” they can significantly differ from true resistances. We
introduce the notation xi = r2

i and x = r2 for the squares of the characteristic and current radii, respectively.
We assume that the “apparent” specific electrical resistances (SER) calculated on the basis of the measured data
are most close to the true (ohmic) SER for r = ri, i.e., correspond to some modes of the random distribution of
measurement errors for the corresponding areas proportional to xi = r2

i . We also assume that the distribution
functions ρi of sensitivity of each probe have the form of the logarithmically normal distribution
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These functions have a maximum at the point x = xi and tend to zero as r → 0 and r → ∞. In (2), σi are the
dispersions of deviations of measurements of apparent SER. Taking into account conditions (1) on the structural
characteristics of HFIIL or HFEL instrumentation, we can assume that dispersion parameters σi for all probes are
approximately identical and equal to σ, and the modes xi are equal to their half-lengths squared. This assumption
was confirmed by processing experimental data. The probability distribution density is normalized so that the
following equality is satisfied:
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dx = 1.

In the proposed method of probability convolutions, the measured “apparent” SER are interpreted as the
averaging of true electrical resistances of the medium with a weight function of the form (2). Thus, for an arbitrary
true distribution R(r), the ith probe registers the “apparent” SER averaged over the entire space, which can be
calculated by the formula

R̄i =

∞∫
0

R(r)ρi(r)r dr. (3)

Let the function of true SER have a stepwise form:

R =

{
R0
n, 0 < rn,

R0
0, rn < r <∞.

(4)

Here rn is the radius of the zone of penetration of the drilling mud filtrate into the aquifer with an initial resistance R0
0

and R0
n is the resistance of the stratum completely saturated by the filtrate. The size of the penetration zone is

determined from the water-mass balance equation

mπ(r2
n − r2

w) = 2πrw

t∫
0

V (rw, t) dt, (5)

where V (rw, t) is the velocity of filtrate penetration through the oil-well wall of radius r = rw and m is the medium
porosity. Substituting function (4) into formula (3) and integrating, we obtain
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where the probability integral erf (x) is a known tabulated function and xn = r2
n.

Let us consider some particular cases.
1. Homogeneous oil stratum with a resistance R0

0 without the penetration zone (xn = 0). In this case, as
xn → 0, from (6) we obtain erf (−∞) = −1 and R̄i = R0

0, i.e., the “apparent” resistance becomes the true resistance,
and all probes register the true SER, independently of xi.

2. The size of the penetration region is very large (xn →∞). In this case, formula (6) again yields R̄i = R0
n.

3. The penetration zone coincides with the zone of high sensitivity of the ith probe (xn = xi). This probe
registers the “apparent” resistance calculated by the formula

R̄n =
R0
n +R0
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2
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0

2
erf
( σn√

2

)
.

It follows from the above-said that an acceptable approximate mean arithmetic SER at the front of the
drastic change in resistance is registered by a probe i = n with a small dispersion parameter σ. The greater σ, the
more underestimated the “apparent” SER as compared to the true value.

1. Filtrate Penetration into the Aquifer. The distribution of true resistances in the form (4) with the
inequality R0

n > R0
0 being satisfied corresponds to the simplest case of penetration of a comparatively fresh filtrate

of the drilling mud into the stratum completely saturated by more mineralized water. In this kind of displacement,
there is a distinct boundary between the solutions. Indeed, it was shown experimentally previously [3, 4] that the
coefficient of filtration dispersion Df in fine-grained sandstone can be represented as a sum of two components:

Df = λlong|v|+Dmmψ.
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Here λlong is the coefficient of longitudinal dispersion, v is the velocity along the streamline, Dm is the diffusion
coefficient in the free solution, and ψ is the tortuosity coefficient. In the experiments, we obtained λlong ≈ 10−3 m
and ψ ≈ 0.7–0.8. In the case of short-time intrusions of the filtrate into the stratum, which corresponds to a real
situation in drilling wells, the second term can be neglected. Then, for the coefficient of filtration dispersion, we
obtain Df = λlong|v|. In the one-dimensional case, the length of the smearing zone of the initially sharp jump in
mineralization, ∆Rf , can be estimated by the formula [5]

∆Rf = 2
√

2Dft/m,

where t is the time. Substituting the value of Df into this expression and introducing the notation for the front
coordinate rf ≈ vt/m, for rn = 0.5 m, we obtain ∆Rf ≈ 6.3 · 10−2 m. In the axisymmetric case, other conditions
being equal, the zone length is approximately equal to 3.6 · 10−2 m, which is small as compared to the penetration
depth. Therefore, the use of the piecewise-constant distribution of resistance in a stepwise form (4) is justified.

The calculations show that the “apparent” resistances measured by the probes in accordance with formula (3)
are smoothed and coincide with the true resistances only close to the well and far from it.

2. Penetration into the Oil Stratum. In the case of immiscible displacement, we first consider the
Buckley–Leverett scheme for two-phase filtration [6]. In the axisymmetric case, the laws of conservation of mass for
oil and water

1
r

∂

∂r
(rv) +m

∂s

∂t
= 0,

1
r

∂

∂r
(rv1)−m ∂s

∂t
= 0

(s is the oil saturation and v and v1 are the velocities of oil and water, respectively) yield the first integral

r(v + v1) = rwV (t)

and the hyperbolic equation for saturation

m
∂s

∂t
+
rw

r
V (t)F ′(s)

∂s

∂r
= 0. (7)

Here F ′ is the derivative of the Buckley–Leverett function F (s) = αf(s)/[αf(s) + f1(s)], f(s) and f1(s) are the
relative phase permeabilities for oil and water, respectively, α = µ1/µ, and µ and µ1 are oil and water viscosities.
The function F (s) has the properties F (0) = 0, F (1) = 1, F ′(s) > 0 and in addition, by the flow properties
v = rwV (t)F (s)/r and v1 = rwV (t)[1− F (s)]/r [V (t) is the total velocity of the fluids]. For water penetration, we
have V (t) = v1(rw, t). Introducing the new variables

τ =
2

mrw

t∫
0

V (t) dt, ξ =
x

r2
w

=
( r

rw

)2

,

we can write an implicit solution of Eq. (7)

ξ = τF ′(s) + 1

that satisfies the condition r = rw for t = 0. It follows from here that the variable τ is determined by the penetration
depth (radius) rn. In accordance with formula (5), we obtain the relation

τ = (rn/rw)2 − 1. (8)

At the front of water penetration r = rf , oil saturation s = sf remains constant if the initial oil saturation s0

of the oil stratum is constant [7]. Its value is determined from the transcendental equation

s0 − sf = [F (s0)− F (sf)]/F ′(sf),

and the front r = rf propagates according to the law

rf = rw

√
1 + τF ′(sf).

In addition, it was shown [7] that the integral oil saturation averaged over the area 〈s〉 is independent of the position
of the penetration front and is determined only by the constant sf :

〈s〉 = sf − F (sf)/F ′(sf).
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Note, in contrast to the example considered in Sec. 1, here we have r = rn, i.e., the radius of the total
volume displacement of the fluids and the coordinate of the filtrate-penetration front r = rf do not coincide. Since
(rf/rw)2 = τF ′(sf) + 1 and F ′(sf) > 1 for α < 1, then, with allowance for (8), we obtain

(rf/rw)2 = 1 + [(rf/rw)2 − 1]F ′(sf)

or

r2
f − r2

w = (r2
n − r2

w)F ′(sf).

Since normally we have F ′(sf) > 1, the radius of the penetration front is rf > rn (Fig. 1). In Fig. 1, we have
s0 = 0.7. The so-called low-resistivity zone following the penetration front rf is identified during logging with the
region of reduced specific electrical resistance. The salt concentration within this zone is higher than in the water
filtrate and is almost the same as in native water. To prove this fact and estimate the size of the low-resistivity
zone in the region rw < r < rf , we consider the area-averaged integral value of oil saturation s = 〈s〉. Figure 1
shows the dependence s(r). The process of salt exchange in displacing oil or gas from the near-well zone by the
drilling mud filtrate (in this case, water with a comparatively low content of salts cp) in the stratum with natural
water saturation s1 = 1 − s0 and some mineralization c0 > cp is heterogeneous. During filtration, part of the oil
phase immiscible with water remains in formation pores, and native water is usually little mobile with respect to
the rock skeleton. In this case, in describing salt transport by the water phase, one should take into account the
kinetics of mass exchange between heterogeneous structures containing mobile and localized water.

As was shown previously [8], in the one-dimensional case, an acceptable equation of salt-exchange kinetics
is Freindlich’s isotherm equation, which implies that the exchange intensity is proportional to the difference in salt
concentrations in the mobile and localized water. If mass exchange occurs rather rapidly, the salt concentration in
the low-resistivity zone formed behind the penetration front equals the salt concentration in native water. A similar
result is obtained if the so-called method of active plates with the “plate height” tending to zero is used [9].

In axisymmetric motion, we consider two cases (Fig. 2). Case 1 corresponds to filtrate penetration with the
front rf without interaction with native water (Fig. 2a); case 2 corresponds to penetration to the same depth but
with an infinitely rapid interaction in accordance with the mechanism described above (Fig. 2b). Figure 2 shows
the mass-exchange schemes corresponding to these cases. The law of conservation of mass of salts dissolved in water
yields the equation

(r2
f − r2

w)[(1− s0)c0 + (s0 − 〈s〉)cp] = (r2
f − r2

l.z.)(1− 〈s〉)c0 + (r2
l.z. − r2

w)(1− 〈s〉)cp.

Collecting the like terms, we obtain the main relation between the radius of the low-resistivity zone rl.z., filtrate-
penetration front rf , initial oil saturation of the formation s0, and mean oil saturation of the penetration zone 〈s〉:

r2
l.z. =

s0 − 〈s〉
1− 〈s〉

r2
f + r2

w

1− s0

1− 〈s〉
.

The above-said is also valid in the case of filtrate penetration into a gas-bearing stratum. The displacement
scheme is shown in Fig. 3 (s0 = 0.7). In contrast to the oil-displacement scheme (see Fig. 1), here we observe
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low values of mean gas saturation. Thus, in mud-filtrate drilling of boreholes in oil- or gas-bearing formations, the
function of electrical resistance in the near-well zone is represented as

R =


Rn, rw < r 6 rl.z.,

Rl.z., rl.z. < r < rf ,

R0, rf < r <∞.
Here Rl.z. is the specific resistance of the low-resistivity zone. Substituting these values into formula (3), we obtain

R̄(ri) =
Rn −Rl.z.

2
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ln
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2
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. (9)

Note, Eqs. (6) and (9) for the “apparent” resistances registered by the ith probe can be considered as a
generic expression for an arbitrary set of probes if they are characterized by identical dispersion and, in addition,
satisfy the isoparametric conditions (1).
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3. Calculation Examples. We consider filtrate penetration into water-, oil-, and gas-bearing formations
with identical penetration depths rn = 0.5 m, identical concentrations and amounts of localized water s0

1 = 1− s0,
s0 = 0.7 (for the oil-bearing stratum). For the aquifer, we assume that R0

n = 4 Ω · m and R0
0 = 1 Ω ·m. In Fig. 4,

this case corresponds to curve 1 obtained by formula (6).
For the oil-bearing stratum, we assume that f(s) = s3.5, f1(s) = (1−s)3.5, and α = 0.16. Then, for s0 = 0.7,

we obtain [7] sf = 0.607, 〈s〉 = 0.489, rf = 0.93 m, and rl.z. = 0.59 m. In accordance with the known Archie law [10],
the ratio of electrical resistance of a porous medium with complete saturation of porous space by an electrolyte to
the resistance with incomplete saturation by the same electrolyte is inversely proportional to the saturation degree
s1 = 1− s with a certain coefficient n ≈ 2. For the oil stratum considered, we can assume that Rn = R0

n/(1−〈s〉)2,
R0 = R0

0/(1 − s0)2, and Rl.z. = R0
0/(1 − 〈s〉)2. Then, using formula (9), we determine the dependence plotted by

curve 2 in Fig. 4.
In the case of a gas-bearing bed, we can assume that α = 50. The corresponding displacement scheme is

shown in Fig. 3. The computations gave the following values of parameters: sf = 0.12, F ′(sf) = 1.6, 〈s〉 = 0.07,
xf = 0.27, xl.z. = 0.397, Rn = 4.62, Rl.z. = 1.16, and R0 = 11.1. The dependence corresponding to these data
is plotted by curve 3 in Fig. 4. In all examples considered, the dispersion σ was assumed to have a value of 0.68
obtained by solving inverse problems based on the logging data for aquifers.

It is seen in Fig. 4 that the logging curve for strata with medium oil saturation (curve 2) has a local minimum
due to the presence of the low-resistivity zone. The research shows, that it is practically absent in strata with a
rather high content of oil because of the low resolution of the probes at high values of σ. A similar picture is
observed for gas-bearing formations: the presence of low-resistivity zones can be found only theoretically.

Conclusions. Based on the focusing properties of probes in HFIIL (5 probes) or HFEL (9 probes) devices,
with the use of analytical solutions of problems of immiscible filtration with rapid salt exchange between the drilling
mud filtrate and native water, simple engineering formulas suitable for interpreting logging charts are derived. The
formulas obtained allow one to effectively solve inverse problems of determining physical properties of formations
and fluids contained in them on the basis of electromagnetic logging data.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 03-05-64210).
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